Optimal Scheduling of Port Operations
—Integrated Berth Allocation and Quay Crane Scheduling

He Yaohua, Fwa Tien Fang
Yaohua.He001@gmail.com

Centre for Maritime Studies
National University of Singapore
April 24, 2015
Outline

Introduction of the Integrated Problem BA-QCS
- Discrete berth allocation (BA)
- Quay crane scheduling (QCS)
- Integrated discrete BA and QCS

Part 1: Discrete Berth Allocation
- An MILP model by Lee and Wang (2010)
- A compact MILP model for BA
- A model based on multiple time grids

Part 2: Quay Crane Scheduling
- Consider crane travel times or not
- An MILP by Lee and Chen (2010)
- An MILP model considering travel times

Numerical Experiments (Three Examples)

Conclusion and Further Work
Discrete BA & QCSP

- **Q berths**
- **S ships**
- **M cranes**
- **N bays**

Berth allocation

Quay crane scheduling
Integrated Procedure of BA-QCS

- a number of ships: S
- arrival time: a_s
- number of bays: N
- bay process time: p_i
- quay cranes: M
- ready time: br_u
- a number of berths: Q

H_{su}: handling time of ship s at berth u, $H_{su} = \left(\frac{c_{max}}{60}\right)_{su}$
A Schedule for Berth Allocation

60 ships are handled by 6 berths, $CV_{max} = 186$ hours
A ship with 16 bays is served by 5 cranes, $C_{max} = 665$ min
Part 1: Discrete Berth Allocation

Indices

$s, t =$ different ships
$u, v =$ different berths
$n =$ different time points

Sets

$V =$ a set of ships to be handled (with S ships)
$U =$ a set of berths (with Q berths)
$T =$ a set of time points on each unit

Parameters

$S = |V|$, the number of ships
$Q = |U|$, the number of berths
$H_{su} =$ handling time of ship s at berth u
$a_s =$ ship arrival time, the time at which ship s can start its handling
$br_u =$ berth ready time, the time at which berth u get ready for handling ships
$B =$ a big number, for “Big M” constraints
Binary Variables:

\[X_{su} = \] binary variables equal to 1, if and only if ship \(s \) is assigned to berth \(u \)

\[Y_{st} = \] binary variables equal to 1, if and only if the handling completion time of ship \(s \) is no later than the handling start time of ship \(t \)

\[Z_{st} = \] the handling of ship \(t \) follows the handling of ship \(s \), both are handled at the same berth

\[X_{s,u,n} = \] ship \(s \) is assigned to time point \(n \) at berth \(u \)

Positive Continuous Variables:

\[CV_s = \] handling completion time of ship \(s \)

\[m_s = \] mooring or berthing time of container ship \(s \), which is handling start time of ship \(s \)

\[ST_{u,n} = \] start of time point \(n \) at berth \(u \)

\[CV_{\text{max}} = \text{makespan}, \quad CV_{\text{max}} = \max \{ CV_1, CV_2, \ldots, CV_S \} \]
Bi-Index Formulation by Lee and Wang (2010)

BIF-Lee&Wang (Model I): with three “Big M” constraints

Variables: X_{su}, Y_{st}, m_s, CV_s and CV_{max}

Model constraints:

1. $CV_{max} \geq CV_s, \quad \forall s \in V$
2. $CV_s = m_s + \sum_{u \in U} X_{su} \cdot H_{su}, \quad \forall s \in V$
3. $\sum_{u \in U} X_{su} = 1, \quad \forall s \in V$

4. $CV_s - m_t + B \cdot Y_{st} \geq 0, \quad \forall s, t \in V$
5. $CV_s - m_t - B \cdot (1 - Y_{st}) \leq 0, \quad \forall s, t \in V$
6. $B \cdot [(X_{su} - 1) + (X_{tu} - 1)] \leq Y_{st} + Y_{ts} - 1, \quad \forall s, t \in V, \quad i < j; \quad \forall u \in U$
7. $m_s \geq a_s, \quad \forall s \in V$
8. $m_s \geq b_{ru} \cdot X_{su}, \quad \forall u \in U, \quad \forall s \in V$

Objective function:

$\text{Min} \quad CV_{\text{max}}$
Compact Bi-Index Formulation

CBIF (Model II): with two “Big M” constraints

Variables: X_{su}, Z_{st}, CV_s and CV_{max}

Model constraints:

\[\sum_{u \in U} X_{su} = 1, \quad \forall s \in V \] \hspace{1cm} (10)

\[X_{su} + \sum_{v \in U, v \neq u} X_{sv} + Z_{st} \leq 2, \quad \forall u \in U, \quad s = \{1, \ldots, S-1\}, t = \{s+1, \ldots, S\} \] \hspace{1cm} (11)

\[CV_t - CV_s + B \cdot (3 - Z_{st} - X_{su} - X_{sn}) \geq H_{tu}, \quad \forall u \in U, \quad s = \{1, \ldots, S-1\}, t = \{s+1, \ldots, S\} \] \hspace{1cm} (12)

\[CV_s - CP_t + B \cdot (2 + Z_{st} - X_{su} - X_{sn}) \geq H_{su}, \quad \forall u \in U, \quad s = \{1, \ldots, S-1\}, t = \{s+1, \ldots, S\} \] \hspace{1cm} (13)

\[CV_s - X_{su} \cdot H_{su} \geq X_{su} \cdot br_u, \quad \forall u \in U, \quad \forall s \in V \] \hspace{1cm} (14)

\[CV_s - \sum_{u \in U} X_{su} \cdot H_{su} \geq a_s \cdot \sum_{u \in U} X_{su}, \quad \forall s \in V \] \hspace{1cm} (15)

\[CV_{max} \geq CV_s, \quad \forall s \in V \] \hspace{1cm} (16)

Objective function:

\[\text{Min} \quad CV_{max} \] \hspace{1cm} (17)
Multiple-Time-Grid Continuous-Time Formulation based on Castro et al., 2006

MTGF(III): Each berth uses a time grid with $|T|$ time start points to avoid the use of “Big M” constraints.

Variables: $X_{s,u,n}$, $ST_{u,n}$, and CV_{max}

Constraints:

\[\sum_{u \in U} \sum_{n \in T} X_{s,u,n} = 1, \quad \forall s \in V \]

\[ST_{u,n+1} \geq ST_{u,n} + \sum_{s \in V} X_{s,u,n} \cdot H_{su}, \quad \forall u \in U, \forall n \in T, n \neq |T| \]

\[ST_{u,n} \geq br_u \cdot \sum_{s \in V} X_{s,u,n}, \quad \forall u \in U, \forall n \in T \]

\[ST_{u,n} \geq ar_s \cdot \sum_{s \in V} X_{s,u,n}, \quad \forall u \in U, \forall n \in T \]

\[CV_{\text{max}} \geq ST_{u,n} + \sum_{s \in I} X_{s,u,n} \cdot H_{su}, \quad \forall u \in U, \forall n \in T, n \neq |T| \]

Objective function:

\[\text{Min} \quad CV_{\text{max}} \]
Part 2: Quay Crane Scheduling

Indices

\(i, j, h = \text{different bays} \)
\(k, l = \text{different cranes} \)

Sets

\(I = \text{a set of bays to be processed (with } N \text{ bays)} \)
\(W = \text{a set of cranes (with } M \text{ cranes)} \)

Parameters

\(N = |I|, \text{ the number of bays} \)
\(M = |W|, \text{ the number of cranes} \)
\(p_i = \text{processing time of bay } i \)
\(c_{ij} = \text{crane travel time changing from bay } i \text{ to bay } j \)
\(o_{ri} = \text{bay ready time, the time at which bay } i \text{ can start its processing} \)
\(ur_k = \text{crane ready time, the time at which crane } k \text{ can get ready} \)
\(B = \text{a big number, for “Big M” constraints} \)
Quay Crane Scheduling (cont.)

Binary Variables:

- X_{ik} = binary variables equal to 1, if and only if bay i is assigned to crane k;
- Y_{ij} = binary variables equal to 1, if and only if bay i completes no later than bay j starts, that is, $C_i < C_j - p_j$;
- S_{ik} = bay i is the first bay assigned to crane k, i.e. bay i is the starting bay on crane k
- Z_{ij} = bay j follows bay i, both bay i and bay j are processed by the same crane

Positive Continuous Variables:

- C_i = completion time of bay i
- ST_i = processing start time of bay i
- PST_i = processing start time of bay i
- TST_i = processing start time of bay i
- C_{max} = makespan, $C_{max} = \max\{C_1, C_2 \ldots, C_N\}$
Bi-index Formulation by Lee and Chen (2010)

BIF-Lee&Chen (I): Non-crossing, NOT consider c_{ij}, o_i, u_{r_k}

Variables: X_{ik}, Y_{ij}, ST_i and C_{max}

Model constraints:

\[
C_{\text{max}} \geq ST_i + p_i, \quad \forall i \in I
\]

\[
ST_0 + p_0 = \sum_{j \in I} p_j, \quad ST_{N+1} + p_{N+1} = \sum_{j \in I} p_j
\]

\[
\sum_{k=0}^{M+1} X_{ik} = 1, \quad \forall 0 \leq i \leq (N+1)
\]

\[
X_{00} = 1, \quad X_{N+1,M+1} = 1
\]

\[
ST_i + p_i - ST_j + B^*Y_{ij} \geq 0, \quad \forall 0 \leq i, j \leq (N+1)
\]

\[
ST_i + p_i - ST_j - B^*(1-Y_{ij}) \leq 0, \quad \forall 0 \leq i, j \leq (N+1)
\]

\[
B^*(Y_{ij} + Y_{ji}) \geq \sum_{k=0}^{M+1} k^*X_{ik} - \sum_{l=0}^{M+1} l^*X_{jl} + 1, \quad \forall 0 \leq i < j \leq (N+1)
\]

\[
B^*(Y_{ij} + Y_{ji}) \geq \sum_{l=0}^{M+1} l^*X_{jl} - \sum_{k=0}^{M+1} k^*X_{ik} + (i-j), \quad \forall 0 \leq i < j \leq (N+1)
\]

Objective function:

\[
\text{Min} \quad C_{\text{max}}
\]
Compact Bi-Index Formulation for QCS (1/2)

CBIF-QCS (II): consider travel times c_{ij}, ready times o_{ri}, u_{rk}

Variables: X_{ik}, Z_{ij}, Y_{ij}, PST_i, TST_i and C_{max}

Constraints:

1. $X_{ik} + \sum_{l \in W, l \neq k} X_{jl} + Z_{ij} \leq 2, \forall k \in W, i = \{1, \cdots, N-1\}, j = \{i+1, \cdots, N\}$ (31)

2. $PST_j - PST_i + B \cdot (3 - Z_{ij} - X_{ik} - X_{jk}) \geq p_i + c_{ij}$, $\forall k \in W, i = \{1, \cdots, N-1\}, j = \{i+1, \cdots, N\}$ (32)

3. $PST_i - PST_j + B \cdot (2 + Z_{ij} - X_{ik} - X_{jk}) \geq p_j + c_{ji}$, $\forall k \in W, i = \{1, \cdots, N-1\}, j = \{i+1, \cdots, N\}$ (33)

4. $PST_i \geq u_{rk} \cdot X_{ik}, \forall k \in W, \forall i \in I$ (34)

5. $PST_i \geq o_{ri} \cdot \sum_{k \in W} X_{ik}, \forall i \in I$ (35)

6. $C_{max} \geq PST_i + \sum_{k \in W} X_{ik} \cdot p_i, \forall i \in I$ (36)

7. $\sum_{k=0}^{M+1} X_{ik} = 1, \forall 0 \leq i \leq (N + 1)$ (37)
CBIF-QCS (II): non-crossing constraints

\[PST_0 + p_0 = \sum_{j \in I} p_j, \quad PST_{N+1} + p_{N+1} = \sum_{j \in I} p_j \]

\[X_{00} = 1, \quad X_{N+1,M+1} = 1 \]

\[PST_i = TST_i + \sum_{\ell=0}^{N+1} (Z_{i\ell} \times c_{i\ell}), \quad \forall 0 \leq i \leq (N + 1) \]

\[PST_i + p_i - TST_j + B \times Y_{ij} \geq 0, \quad \forall 0 \leq i, j \leq (N + 1) \]

\[PST_i + p_i - TST_j - B \times (1 - Y_{ij}) \leq 0, \quad \forall 0 \leq i, j \leq (N + 1) \]

\[B \times (Y_{ij} + Y_{ji}) \geq \sum_{k=0}^{M+1} k \times X_{ik} - \sum_{l=0}^{M+1} l \times X_{jl} + 1, \quad \forall 0 \leq i < j \leq (N + 1) \]

\[B \times (Y_{ij} + Y_{ji}) \geq \sum_{l=0}^{M+1} l \times X_{jl} - \sum_{k=0}^{M+1} k \times X_{ik} + (i - j), \quad \forall 0 \leq i < j \leq (N + 1) \]

Objective function:

\[\text{Min} \quad C_{\text{max}} \]
Numerical Experiments (1/3)

- Formulated with \textit{GAMS 23.3}, solved by \textit{Cplex 12.1}
- Tested on a PC with i5-4570 CPU @ 3.20GHz & 8GB M.
- \textbf{Example 1 of BA}: $H_{su} \in [5, 25)$, $a_s \in [0, 25)$, $br_u \in [0, 25)$, \textit{in hours}.
- A busy port, up to 60 ships are handled by 6 berths in a week (168 h).

<table>
<thead>
<tr>
<th>Instance</th>
<th>BIF – Lee&Wang (I)</th>
<th>CBIF (II)</th>
<th>MTGF (III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>S/Q</td>
<td>CV_{max}</td>
<td>CPU (Gap)</td>
</tr>
<tr>
<td>1</td>
<td>10/3</td>
<td>56*</td>
<td>25.59</td>
</tr>
<tr>
<td>2</td>
<td>11/3</td>
<td>58*</td>
<td>124.16</td>
</tr>
<tr>
<td>3</td>
<td>12/3</td>
<td>61*</td>
<td>659.24</td>
</tr>
<tr>
<td>4</td>
<td>13/3</td>
<td>68</td>
<td>7200 (7.35%)</td>
</tr>
<tr>
<td>5</td>
<td>14/3</td>
<td>68</td>
<td>7200 (5.88%)</td>
</tr>
<tr>
<td>6</td>
<td>15/3</td>
<td>71</td>
<td>7200 (26.76%)</td>
</tr>
<tr>
<td>7</td>
<td>20/2</td>
<td>150</td>
<td>7200 (58.11%)</td>
</tr>
<tr>
<td>8</td>
<td>30/3</td>
<td>147</td>
<td>7200 (70.69%)</td>
</tr>
<tr>
<td>10</td>
<td>40/4</td>
<td>/</td>
<td>7200 (no sltn)</td>
</tr>
<tr>
<td>11</td>
<td>50/5</td>
<td>/</td>
<td>7200 (no sltn)</td>
</tr>
<tr>
<td>12</td>
<td>60/6</td>
<td>/</td>
<td>7200 (no sltn)</td>
</tr>
</tbody>
</table>

* optimum
Numerical Experiments (2/3)

Example 2 of BA: $H_{su} \in [5, 25)$, $a_s \in [0, 168)$, $b_{ru} \in [0, 25)$

<table>
<thead>
<tr>
<th>Instance</th>
<th>BIF –Lee&Wang (I)</th>
<th>CBIF (II)</th>
<th>MTGF (III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>S/Q</td>
<td>CV_{max}</td>
<td>CPU (Gap)</td>
</tr>
<tr>
<td>1</td>
<td>20/2</td>
<td>187*</td>
<td>6.12</td>
</tr>
<tr>
<td>2</td>
<td>30/3</td>
<td>172*</td>
<td>23.50</td>
</tr>
<tr>
<td>3</td>
<td>40/4</td>
<td>179*</td>
<td>2995.71</td>
</tr>
<tr>
<td>4</td>
<td>50/5</td>
<td>181</td>
<td>7200 (2.21%)</td>
</tr>
<tr>
<td>5</td>
<td>60/6</td>
<td>180</td>
<td>7200 (1.67%)</td>
</tr>
</tbody>
</table>

Berth (Not so busy as before) $CV_{max} = 177.00$

\[S_{min} = 0.00 \]

$\theta_{ij} = 177.00$ (Not so busy as before)
Numerical Experiments (3/3)

An Example of QCS: $p_i \in [30, 180)$, $c_{ij} = |j - i|$ (in minutes)

<table>
<thead>
<tr>
<th>Instance</th>
<th>BIF –Lee&Chen (I)</th>
<th>CBIF-QCS (II)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>$\max C$</td>
<td>$CPU (\text{Gap})$</td>
</tr>
<tr>
<td>1</td>
<td>10/2</td>
<td>539*</td>
</tr>
<tr>
<td>2</td>
<td>11/3</td>
<td>405*</td>
</tr>
<tr>
<td>3</td>
<td>12/3</td>
<td>458*</td>
</tr>
<tr>
<td>4</td>
<td>13/3</td>
<td>492*</td>
</tr>
<tr>
<td>5</td>
<td>14/3</td>
<td>534</td>
</tr>
<tr>
<td>6</td>
<td>15/3</td>
<td>545</td>
</tr>
<tr>
<td>7</td>
<td>20/4</td>
<td>565</td>
</tr>
<tr>
<td>8</td>
<td>25/5</td>
<td>539</td>
</tr>
<tr>
<td>10</td>
<td>30/5</td>
<td>647</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crane</th>
<th>Bay</th>
<th>Start Time</th>
<th>End Time</th>
<th>Process Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>k1</td>
<td>i1</td>
<td>436</td>
<td>594</td>
<td>158</td>
</tr>
<tr>
<td>k1</td>
<td>i2</td>
<td>305</td>
<td>435</td>
<td>130</td>
</tr>
<tr>
<td>k1</td>
<td>i3</td>
<td>187</td>
<td>304</td>
<td>117</td>
</tr>
<tr>
<td>k1</td>
<td>i4</td>
<td>114</td>
<td>186</td>
<td>72</td>
</tr>
<tr>
<td>k1</td>
<td>i8</td>
<td>0</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>k2</td>
<td>i5</td>
<td>317</td>
<td>496</td>
<td>179</td>
</tr>
<tr>
<td>k2</td>
<td>i6</td>
<td>497</td>
<td>594</td>
<td>97</td>
</tr>
<tr>
<td>k2</td>
<td>i9</td>
<td>217</td>
<td>308</td>
<td>91</td>
</tr>
<tr>
<td>k2</td>
<td>i12</td>
<td>35</td>
<td>214</td>
<td>179</td>
</tr>
<tr>
<td>k2</td>
<td>i15</td>
<td>0</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>k3</td>
<td>i7</td>
<td>494</td>
<td>580</td>
<td>86</td>
</tr>
<tr>
<td>k3</td>
<td>i11</td>
<td>266</td>
<td>381</td>
<td>115</td>
</tr>
<tr>
<td>k3</td>
<td>i13</td>
<td>383</td>
<td>488</td>
<td>105</td>
</tr>
<tr>
<td>k3</td>
<td>i14</td>
<td>140</td>
<td>263</td>
<td>123</td>
</tr>
<tr>
<td>k3</td>
<td>i18</td>
<td>0</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>k4</td>
<td>i10</td>
<td>508</td>
<td>543</td>
<td>35</td>
</tr>
<tr>
<td>k4</td>
<td>i16</td>
<td>340</td>
<td>502</td>
<td>162</td>
</tr>
<tr>
<td>k4</td>
<td>i17</td>
<td>245</td>
<td>339</td>
<td>94</td>
</tr>
<tr>
<td>k4</td>
<td>i19</td>
<td>141</td>
<td>243</td>
<td>102</td>
</tr>
<tr>
<td>k4</td>
<td>i20</td>
<td>0</td>
<td>140</td>
<td>140</td>
</tr>
</tbody>
</table>

A QC schedule
Conclusion and Further Work

- We have developed mixed integer programming (MIP) models for the discrete BA-QSCP.
- The proposed QCS model considers crane travel times as well as non-crossing constraints.
- The proposed BA model (Model III) based on multiple time grids is able to avoid the “Big M” constraints, and solve industrial-size instances (up to 60 ships and 6 berths) to optimality or near-optimality in 2h.

- In fact, we also have developed meta-heuristic methods to solve far larger instances (e.g., 200 ships and 16 berths) in short computational time, but cannot prove the optimality.
- We will further develop branch-and-price algorithms based on column generation, which can be much faster than MIP and prove the optimality.
- If a port is quite busy, we should apply continuous BA-QCS models which can make full use of the berth space and quay cranes, more challenging.
Thank You!

Yaohua.He001@gmail.com